Name:	
Instructor:	

Math 10550, Final Exam: December 17, 2008

- The Honor Code is in effect for this examination, including keeping your answer sheet under cover.
- No calculators are to be used.
- The exam lasts for two hours.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 14 pages of the test.

		PLEAS	E MAR	K YOU	R ANS	WERS W	ITH A	N X, no	ot a circ	ele!	
1.	(a)	(b)	(c)	(d)	(e)	15.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)	16.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)		(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)	18.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)	19.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)	20.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)	21.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)	22.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)	23.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)	24.	(a)	(b)	(c)	(d)	(e)
11.	(a)	(b)	(c)	(d)	(e)	25.	(a)	(b)	(c)	(d)	(e)
12.	(a)	(b)	(c)	(d)	(e)						
13.	(a)	(b)	(c)	(d)	(e)						
14.	(a)	(b)	(c)	(d)	(e)						

Name: _______
Instructor: ______

Multiple Choice

1.(6 pts.) Find the limit

$$\lim_{x \to 0} \frac{3 - \sqrt{x+9}}{x}.$$

(a) $-\frac{1}{6}$

- (b) -3
- (c) The limit does not exist.
- (d) $\frac{1}{6}$

(e) 3

 $\mathbf{2.}(6 \text{ pts.})$ Find all points where the following function is discontinuous

$$f(x) = \begin{cases} \frac{(x-1)(x+2)}{(x^2-1)x} & x \neq 1\\ \frac{3}{2} & x = 1 \end{cases}.$$

- (a) x = -2, x = -1, x = 1
- (b) x = 0, x = -1

(c) x = 0, x = 1

(d) x = 0, x = -2, x = 1

(e) x = 0, x = -1, x = 1

3.(6 pts.) If

$$f(x) = \sqrt{1 + \sqrt{1 + x}},$$

then f'(8) =

- (a) $\frac{1}{8}$ (b) $\frac{1}{9}$ (c) $\frac{1}{24}$ (d) $\frac{1}{2}$ (e) $\frac{1}{12}$

4.(6 pts.) The second derivative of

$$f(x) = \frac{\sin x}{x}$$

is

(a)
$$\frac{-x^2\sin x + 4x\cos x + 5\sin x}{x^3}$$

(b)
$$\frac{-x^2\sin x - 3x\cos x + 2\sin x}{x^3}$$

(c)
$$\frac{x^2 \sin x + 4x \cos x + 2 \sin x}{x^3}$$

(d)
$$\frac{-x^2\sin x - 2x\cos x + 2\sin x}{x^3}$$

(e)
$$\frac{-x^2\sin x - 3x\cos x + 3\sin x}{x^3}$$

$$s = -t^4 - 4t^3 + 20t^2, \quad t \ge 0.$$

At what position, after the motion gets started, does the body first come to rest?

(a) s = 36

- (b) s = 24
- (c) s = 2

- (d) s = 32
- (e) s = 12

6.(6 pts.) Find an equation for the tangent line to

$$f(x) = \tan(x^2 + 2x)$$

at the point (0,0).

- (a) y = 2x
- (b) y = 0
- (c) $y = \sqrt{2}x$

- (d) $y = 2\sqrt{2}x$
- (e) y = -2x

7.(6 pts.) Find an equation for the tangent line to the curve

$$x^3 + y^3 = 4xy$$

at the point (2,2).

- (a) y = 2x 2
- (b) y = x (c) y = -x + 4
- $(d) \quad y = -x 4$
- $(e) \quad y = -2x + 6$

8.(6 pts.) The length of a rectangle is increasing at a rate of 8 cm/sec and its width is increasing at a rate of 3 cm/sec. When the length is 20 cm and the width is 10 cm, how fast is the area of the rectangle increasing?

- $140\,\mathrm{cm^2/sec}$. (a)
- (b) $211 \,\mathrm{cm^2/sec}$. (c) $190 \,\mathrm{cm^2/sec}$.

- $11 \,\mathrm{cm^2/sec}$. (d)
- (e) $24 \, \text{cm}^2/\text{sec}$.

Name:

Instructor:

9.(6 pts.) Use linear approximation to estimate

$$\frac{1}{\sqrt{3.9}}.$$

- (a) $\frac{1}{\sqrt{3.9}} \approx \frac{9}{20}$
- (b) $\frac{1}{\sqrt{3.9}} \approx \frac{1}{2}$ (c) $\frac{1}{\sqrt{3.9}} \approx \frac{81}{160}$

- (d) $\frac{1}{\sqrt{3.9}} \approx \frac{11}{20}$
- $(e) \quad \frac{1}{\sqrt{3.9}} \approx \frac{79}{160}$

10.(6 pts.) Let

$$f(x) = x^3 + 3x^2 - 24x.$$

Find the absolute maximum and absolute minimum values of f on the interval [0, 10].

- (a) Max at x = 4; Min at x = 0.
- (b) Max at x = 10; Min at x = 0.
- (c) Max at x = 4; Min at x = 2.
- (d) Max at x = 10; Min at x = 2.
- Max at x = 4; Min at x = 1. (e)

11.(6 pts.) Find the local and absolute maximum and minimum of

$$f(x) = 3x^{2/3} - x.$$

- Local min at x = 1/8; absolute min at x = 1; no absolute max. (a)
- (b) Local min at x=1; local max at x=1/8; no absolute min; absolute max at x=-27.
- (c) Absolute min at x = 0; absolute max at x = 8.
- (d) Local min at x = 0; local max at x = 8; no absolute max or min.
- Local max at x = 1; no absolute max; absolute min at x = 0. (e)

12.(6 pts.) Let

$$f(x) = x^{5/3} - 5x^{2/3}.$$

On what intervals is f concave up?

- $(-1,0) \cup (0,\infty)$ (b) (-8,8)(a)

(c) $(1,\infty)$

- (d) $(-\infty, -1)$
 - (e) (0,8)

Name: _______
Instructor: ______

13.(6 pts.) Evaluate the limit

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 2x} - x \right).$$

- (a) $-\infty$
- $(b) \quad 0$
- (c) 1
- (d) 2
- (e) ∞

14.(6 pts.) The equation of the slant asymptote of the curve $y = \frac{2x^2 + 1}{x + 1}$ is:

- (a) y = 2x
- (b) y = 2x 2
- (c) y = -2x + 2

- $(d) \quad y = x + 2$
- (e) y = 2x + 2

Instructor:

15.(6 pts.) Suppose the line y = 4x - 2 is tangent to the curve y = f(x), when x = 1. If the Newton's method is used to locate a root of the equation f(x) = 0 and the initial approximation is $x_1 = 1$, find the second approximation x_2

- (a) -4
- (b) 1
- (c) 0
- (d) 2
- (e) 1/2

16.(6 pts.) Calculate the following definite integral

$$\int_{1}^{5} (5-x)^{2} dx =$$

- (a) 16
- (b) $-\frac{64}{3}$ (c) 3 (d) -16 (e)

17.(6 pts.) Let $g(x) = \int_{\sin x}^{0} t^2 dt$. Find g'(x).

(a) $-(\cos x)^2 \cos x$

(b) $-(\sin x)^2 \cos x$

(c) $(\cos x)^2 \cos x$

(d) $-(\sin x)^2 \sin x$

 $(\sin x)^2 \cos x$ (e)

18.(6 pts.) Calculate the integral $\int_0^2 \frac{x}{\sqrt{x^2+1}} dx$

- (a) $\sqrt{5} 1$
- (b) $-\sqrt{5} 1$ (c) $1 \sqrt{5}$

(d) $\sqrt{5}$

(e) 4

Name: ______
Instructor: _____

19.(6 pts.) Which of the following is a Riemann sum corresponding to the integral

$$\int_0^1 (\tan x + 2) dx.$$

(a)
$$2 + \frac{1}{n} \sum_{i=1}^{n} \tan(\frac{i}{n})$$

(b)
$$\frac{2}{n} + \frac{2}{n} \sum_{i=1}^{n} \tan(\frac{i}{n})$$

(c)
$$\frac{1}{n} \sum_{i=1}^{n} \left(\tan(\frac{i}{n}) + 2 \right)$$

(d)
$$\frac{2}{n}\sum_{i=1}^{n}\tan(\frac{2i}{n})$$

(e)
$$\frac{1}{2n} \sum_{i=1}^{n} \tan(\frac{2i}{n})$$

20.(6 pts.) The point on the line 6x + y = 9 that is closest to the origin has x-coordinate

(a)
$$x = \frac{3}{2}$$

(b)
$$x = 0$$

(c)
$$x = 1$$

$$(d) \quad x = \frac{44}{9}$$

(e)
$$x = \frac{54}{37}$$

Name: ______
Instructor:

21.(6 pts.) The curves $y = x^4 - 3$ and $y = -x^4 + 5$ enclose an area. Set up a definite integral which calculates the area of this region.

(a) $\int_{-1}^{1} (8 - 2x^4) \, dx$

(b) $\int_0^{\sqrt{3}} (8 - 2x^4) \, dx$

 $(c) \qquad \int_{-1}^{1} 2 \, dx$

(d) $\int_{-\sqrt{2}}^{\sqrt{2}} 2 \, dx$

(e) $\int_{-\sqrt{2}}^{\sqrt{2}} (8 - 2x^4) \, dx$

22.(6 pts.) The plane region bounded below by the graph of y = x and above by the graph $y = \sqrt{x}$ is rotated about the line x = 5. Which integral below gives the volume?

- (a) $\pi \int_0^1 (5 \sqrt{x})^2 (5 x)^2 dx$
- (b) $\pi \int_0^1 (5-x)^2 (5-\sqrt{x})^2 dx$
- (c) $2\pi \int_0^1 (x-5) \cdot (\sqrt{x} x) dx$
- (d) $2\pi \int_0^1 (5-x) \cdot (x-\sqrt{x}) dx$
- (e) $2\pi \int_0^1 (5-x) \cdot (\sqrt{x}-x) dx$

Name: _____ Instructor:

23.(6 pts.) Consider the plane region bounded by the graphs of $y = \sqrt{x}$, y = 0 and x=1. Rotate this region about the line y=-3 and calculate the volume.

- (a)

- $\frac{3\pi}{3}$ (b) $\frac{9\pi}{2}$ (c) $\frac{7\pi}{2}$ (d) $\frac{15\pi}{2}$ (e) $\frac{27\pi}{2}$

24.(6 pts.) Find the average of $f(x) = \sin^2(x) \cdot \cos(x)$ over $[0, \frac{\pi}{2}]$.

(a)

(c) $\frac{1}{3}$

(d)

(e) $\frac{1}{3\pi}$

Name:				
Instruct	or:			

25.(6 pts.) A (vertical) cylindrical tank has a height 1 meter and base radius 1 meter. It is filled full with a liquid with a density 100 kg/m^3 . Find the work required to empty the tank by pumping all of the liquid to the top of the tank.

(a) 0 kg-m

(b) $200\pi \text{ kg-m}$

(c) 50π kg-m

(d) 500π kg-m

(e) $100\pi \text{ kg-m}$

Name:		
Instructor	ANSWERS	

Math 10550, Final Exam: December 17, 2008

- The Honor Code is in effect for this examination, including keeping your answer sheet under cover.
- No calculators are to be used.
- The exam lasts for two hours.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 14 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!											
1.	(ullet)	(b)	(c)	(d)	(e)	15.	(a)	(b)	(c)	(d)	(ullet)
2.	(a)	(ullet)	(c)	(d)	(e)	16.	(a)	(b)	(c)	(d)	(ullet)
3.	(a)	(b)	(ullet)	(d)	(e)	17.	(a)	(•)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(ullet)	(e)	18.	` ,	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(•)	(e)		(a)	(b)	(●)	(d)	(e)
6.	(ullet)	(b)	(c)	(d)	(e)	20.	()	(b)	(c)	(d)	(ullet)
7.	(a)	(b)	(ullet)	(d)	(e)		(a)	(b)	(c)	(d)	(ullet)
8.	(•)	(b)	(c)	(d)	(e)	22.	(a)	(b)	(c)	(d)	(●)
9.	(a)	(b)	(ullet)	(d)	(e)		(a)	(ullet)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(ullet)	(e)	24.	(ullet)	(b)	(c)	(d)	(e)
11.	(a)	(b)	(c)	(●)	(e)	25.	(a)	(b)	(ullet)	(d)	(e)
12.	(ullet)	(b)	(c)	(d)	(e)						
13.	(a)	(b)	(ullet)	(d)	(e)						
14.	(a)	(ullet)	(c)	(d)	(e)						